

Basic Number Theory SWAYAM Prabha Course Code - S3

PROFESSOR'S NAME	Prof. Shripad Garge
DEPARTMENT	Mathematics
INSTITUTE	Indian Institute of Technology, Bombay
COURSE OUTLINE	This is a basic course in number theory. We begin with integers, prime factorization and develop the contents to study the quadratic reciprocity laws and continued fractions. This course does not require any advanced mathematical training. Some familiarity with group theory will be useful but it is not necessary to understand the course. This is normally offered at the masters level, so some mathematical maturity is expected.

COURSE DETAILS

S. No	Module ID/ Lecture ID	Lecture Title/Topic
1	L1	Integers
2	L2	Divisibility and primes
3	L3	Infinitude of primes
4	L4	Division algorithm and the GCD
5	L5	Computing the GCD and Euclid's lemma
6	L6	Fundamental theorem of arithmetic
7	L7	Stories around primes
8	L8	Winding up on 'Primes' and introducing 'Congruences'
9	L9	
		Basic results in congruences
10	L10	
		Residue classes modulo n

11	L11	
		Arithmetic modulo n, theory and examples
12	L12	Arithmetic modulo n. more examples
13	L13	
		Solving Linear Polynomials modulo n – I
14	L14	
1 -		Solving Linear Polynomials modulo n – II
15		Solving Linear Polynomials modulo n – III
16	L16	
		Solving Linear Polynomials modulo n – IV
17	L17	
		Chinese remainder theorem, the initial cases
18	L18	
10	110	Chinese remainder theorem, the general case and examples
19		Chinese remainder theorem, more examples
20	120	
20		Using the CRT, square roots of 1 in 7n
21	L21	
		Wilson's Theorem
22	L22	
		Roots of polynomials over Zp
23	L23	
		Euler φ-function - I
24	L24	
		Euler φ-function - II
25	L25	
26	1.20	Primitive Roots - I
26	L26	Drimitive Poets II
27	127	
27		Primitive Boots - III
28	128	
20		Primitive Roots - IV
29	L29	
		Structure of Un - I
30	L30	
		Structure of Un - II
31	L31	
		Quadratic residues
32	L32	
		The Legender symbol
33	L33	
1		Quadratic reciprocity law - I

34	L34	
		Quadratic reciprocity law - II
35	L35	
		Quadratic reciprocity law - III

References if Any: